Translate

segunda-feira, 28 de março de 2022

Carregador de baterias de veículos (carros e motos)


 Carregador de baterias para autos e motos:

 No circuito da figura, vemos o carregador de baterias para automóveis e motos, cujo funcionamento é muito simples. Trata-se de uma lâmpada ligada ao Fase da alimentação AC de 127V, ligada em série com um diodo que varia de 1 a 3 A, embora 1 A seja suficiente para esse circuito, que por sua vez é ligado ao positivo da bateria, o negativo da bateria é ligado ao Neutro da alimentação AC.
 Observe que a carga da bateria é limitada pela lâmpada de 127V/100W, que permite a passagem de uma corrente de até 500mA, no nosso circuito medimos 326 mA, utilizando o diodo 1N4004.
  Pessoas, desenvolvi uma solução bem didática e funcional para construir o carregador, olha aí:


 Na tomada ABNT da figura é encaixada a lâmpada halogênica, vejam como é prático medir as tensões dos pontos e se abrir a conexão do diodo temos a corrente consumida pelo carregador.
Veja esse vídeo feito por mim: 




 Esse circuito carrega uma bateria em até 8 horas, tem um custo que varia de 30 a 50 reais e pode ser vendido por 80,00, a ideia dele é de domínio público, podendo ser realizado um desenho diverso que pode garantir um registro de patente de design. Outra coisa boa é que os elementos da bateria não sofrem estresse de carga, como é o caso de carregadores rápidos. Tenham o cuidado de manter uma isolação de mãos e pés pois as partes estão vivas, ou seja, se cuidem contra o perigo de choque elétrico, assim não terão problemas.
 Experimentei esse circuito na minha motocicleta, e após 5 anos de uso, a bateria da moto ainda é operacional, sendo prolongado um pouco o tempo de vida dela.
 Tenho instruções adicionais:
 



 Lista de materiais

 Bocal de encaixe pra lâmpada, rosqueado.
 D1 - Diodo 1N4004 retificador.
 Garras jacaré médias (02)
 Lâmpada incandescente de 60 a 100W, 127V, veja texto, vídeo e figura.
 Plug pra tomada 110/220V/10 A.
 Tomada tri-way.

Vale a pena experimentar e fazer! Sigam as instruções para montar, seguir o esquema elétrico e ficar isolado evitando tocar em partes expostas, quando conectar o carregador na tomada. Fica a dica!
 Abraços a todos!
  Boa prática!
#carregadordebateria
#eletronica
#electronics
#batterycharger

Binho de Carvalho - Contato: arabutam@gmail.com 

Facebook: Guru Eletrônico

Instagram: guru_eletronico

YouTube: Guru Eletrônico

Site Principal: gurueletronico.blogspot.com, acessem nossa loja do Facebook!

domingo, 20 de março de 2022

Fotocélula otimizada

  Olá pessoas, vou descrever esse incrível projeto, cujo arranjo foi pensado em função do LDR escolhido, que apresentou resistência entre 30 k Ohm até 3M Ohm. O circuito se baseou no teste da figura ao lado, que consiste basicamente num comparador usando o amplificador operacional 741 em polarização simples de 12 VDC, que através das entradas positiva e negativa do CI, liberará um nível positivo na saída após comparar com a referência de resistência criada pelo LDR. Aqui foi simulado o circuito com uma versão antiga do Circuit Maker.
 A resistência do LDR, que no circuito da figura ao lado é R4, oscila na faixa resistiva citada acima, essa faixa é aproximada. Então na presença da luz temos 30k Ohm e na ausência, cerca de 1,2 a 3M Ohm.
 Esse circuito é muito prático e permite fixar o ponto de tensão para acionar ou cortar o transístor, basta fazer o arranjo dos diodos na saída. O relé poderia ser de um valor menor, 5VDC por exemplo, basta ajustar a alimentação do circuito para essa tensão. O relé deve controlar cargas de 10A, alimentadas por tensão AC.
 
O diagrama de circuito ao lado, mostra o detalhe de conexão e o arranjo dos componentes, onde usei conectores para a alimentação do circuito e para a conexão AC no relé, fiz um PCB  e esse diagrama usando o CAD Eagle, se fosse feito no Proteus, ele poderia ser simulado e colocado para ser exposto o projeto em 3D. R4 simula o LDR citado na primeira figura.
 
PCB ao lado mostra os detalhes da configuração dos componentes e fica como sugestiva de lay-out. Vale a pena detalhar a espessura das trilhas que interligam K1 com a carga AC, elas devem ter 2,5mm de largura, em função da carga AC de até 10A.
 
 Lista de componentes:
 1 conector de dois polos, X1.
 1 conector de três polos, J1.
 CI 741, amplificador operacional, CI1.
 4 diodos 1N4148, sendo que o último é soldado invertido em L1 do Relé K1. (D1 a D4).
 PCB de material em fibra ou fenolite.
 R1 e R2, resistores de 15k, 0,125W (1/8).
 R3 e R5, resistores de 10k, 0,125W (1/8).
 R4, é substituído pelo LDR1, que é o resistor sensível a luz.
  k1, relé de 12VDC, 50mA, com chaveamento NA/NF para 127VAC/10A.
 Transístor BC548, Q1.
 Alimentação feita por fonte DC estabilizada, ou retificada e adaptada do AC, confiram nossos projetos de fontes.
 Vejam os detalhes do nosso projeto na bancada em testes, confiram abaixo:

 No canto esquerdo da matriz de contato, temos a configuração do circuito primeiramente com R1 e R2, depois com o R3 e o LDR, o 741 é o quadradinho preto, depois os três diodos, Q1 e o relé k1.
 Os leds vermelho e verde, simulam as condições de desligado e acionado para as conexões em AC. Claro que posso aplicar perfeitamente numa sinalização em DC.
 O valor da faixa de resistência do LDR como foi explicado, variará de componente para componente, sendo perfeitamente aceito pela configuração aplicada no circuito. Na sequência temos os lay-outs finais das placas. Começando com o o lados dos componentes abaixo, no lado direito.



 Observem a disposição dos componentes nesse lay-out de fabricação, simples e direto, com economia e arte. Usando CADs como o Eagle e o Proteus, você pode desenvolver rapidamente sua plaquinha e fabricá-la.

O lado da solda, ao lado, mostra a simplicidade e praticidade construtiva do circuito.
 No mais, é simples o funcionamento e o circuito tem uma empregabilidade elevada e com igual eficiência e durabilidade, aí é aplicar o bom senso...
 Para modelar imagem 3D, o Eagle usa o Fusion 360, que automaticamente cria um modelo com as representações 3D dos componentes do seu projeto, acontece que nem sempre o que você escolhe tem modelo 3D definido e o programa cria uma associação com isso, olhem o modelo abaixo.

 Vejam na figura que alguns componentes não apareceram e o programa trocou por outra representação em função de não ter um modelo 3D para o componente, mesmo assim, fica uma qualidade gráfica extraordinária! 
 Pessoas, bom projeto, abraços e boa montagem!
 
#fotocélula
#eletronica
#electronics
#automação
#automation

Binho de Carvalho - Contato: arabutam@gmail.com 

Facebook: Guru Eletrônico

Instagram: guru_eletronico

YouTube: Guru Eletrônico

Site Principal: gurueletronico.blogspot.com, acessem nossa loja do Facebook!

domingo, 6 de março de 2022

Controle por UJT ou PUT

 Esse circuito é uma ideia postada pelo professor Newton C. Braga, no Curso de Eletrônica Básica, livro lançado como E-Book, pelo Instituto Newton C. Braga.

 O circuito se baseia numa forma de controle simples, em ponte de diodos e no circuito básico de polarização do UJT 2N2648 ou do PUT 2N6823, a tensão do diodo zener, D5, varia entre 12 a 20V. A ponte de diodos dará um sinal de onda que será a referência pra gerar o sinal de disparo no gatilho do TIC226. Este circuito tem um bom controle para cargas indutivas e resistivas.
 O tiristor é um TRIAC TIC 206 ou 226, o resistor R4, será de 10k/2W, se a carga for usada em 127V, ou de 22k/5W, se for 220V, importante montar o tiristor numa placa de metal, isolando devidamente o componente, para dissipar o calor gerado no dispositivo, de forma que não quebre a junção semicondutora pelo excesso de temperatura, as conexões de tensões e cargas, são seletadas em S1 e nos CONECs de 1 a 3, observe figura acima.
 Foi usado nesse circuito um transformador de pulsos de relação 1:1, com a finalidade de isolar o pulso de disparo do gatilho do Triac. Enrole num bastão de ferrite de 1 cm de diâmetro, por 5 cm de comprimento, podendo ser empregado também um núcleo toróide de características similares, 100 espiras de fio esmaltado 28 no primário e mais 100 espiras por cima, do mesmo fio, formando o trafo 1:1.
 Já empreguei esse circuito pra fazer controle de chocadeiras de ovos, secadores e outras aplicações, você pode experimentar uma aplicação em ventiladores e outros motores, o cuidado de usar a configuração certa de circuito com as tensões a serem empregadas.
 Observem abaixo o fotolito do circuito:

 Lista de materiais

 CONEC1 a CONEC3 - conectores, ver figuras e texto.
 C1 - Capacitor cerâmico ou poliéster de 100nF/250V.
 D1 a D4 - Diodos retificadores 1N4004.
 D5 - Diodo zener de 12Vdc/1W.
 Plug tri-way, padrão fonte alimentação PC, veja texto e figuras.
 R1 - Resistor de fio de 470 Ohm/1W.
 R2 - Resistor de 10k/1/8W.
 R3 - Resistor de 4k7/1/8W.
 R4 - Resistor de fio 10k/2W.
 R5 - Potenciômetro linear de 100k.
 T1 - Triac TIC226D.
 T2 - UJT 2N2646.
 TR1 - Transformador 1:1, ver texto.
 S1 - Chave liga-desliga de 3 posições, ver texto e figuras.

Como sugestiva de empacotamento do circuito, empregue uma caixa metálica, que servirá como dissipador pro tiristor e economizará o investimento de componentes desnecessários.
Abraços e boas experiências!

#circuitocomujt
#circuitocomput
#eletronica
#electronics
#automação
#automation

 Contato: 
 arabutam@gmail.com

 Redes sociais: 

 Facebook: Guru Eletrônico

Instagram: guru_eletronico

YouTube: Guru Eletrônico

Site Principal: gurueletronico.blogspot.com, acessem nossa loja do Facebook!