Translate

sexta-feira, 25 de outubro de 2013

Circuito prático de Ponte de Wheatstone

 Olá pessoal nesse artigo sugiro um interessante circuito de Ponte de Wheatstone que fornece com precisão correntes que podem ser empregadas num padrão de instrumentação, usando um circuito simples com o CI 741. O 741 está numa configuração de amplificador de instrumentação e a corrente é regulada pelo ajuste do potenciômetro, que representa aqui uma resistência variável de alguma grandeza ou aquisição de dados, conforme a variação de corrente, o 741 irá conduzir e fechar o transístor T1. A ponte é constituída por resistores de 1k, posso substituir por resistores de 100 Ohms para conseguir correntes maiores. O lay-out da placa é dado acima e é um circuito interessante pra obter correntes de precisão no potenciômetro, que serve como um sensor.
 Abaixo deixo o fotolito do circuito, confiram detalhes do PCB para o correto furo das ilhas e o posicionamento dos componentes.

 Lista de materiais:

 IC1 - Amplificador operacional LM741.
 POT - Potenciômetro ou sensor que varia de 1 a 100k linear, como sugestiva de experiência.
 R1 a R3 - Resistor de 1k/1/8W.
 R4 - Resistor de 120k/1/8W.
 R5 a R7, R9 - Resistor de 2k7/1/8W.
 R8 - Resistor de 100 Ohm/1/8W.
 T1 - Transístor BC547 NPN.

 Experimentem! Boas práticas!

terça-feira, 20 de agosto de 2013

Minuteria eletrônica


Pessoal, um projeto muito prático de uma minuteria eletrônica com base na temporização feita por um timer formado pelo circuito RC, de R1 e C1, que ao acionarmos o botão S1, energizaremos o RC, que se descarrega pelo Darlington formado por Q1 e Q2, observe figura ao lado, e energiza o relé K1.
 A alimentação é fornecida pelo X2, com a tensão de 12 Vdc. Veja na figura abaixo o lay-out do PCB.
Observe que em X1 teremos a conexão dos contatos NA e NF do relé e será ali que conectaremos a carga a ser controlada, que pode ser AC ou DC.
O detalhe da conexão de X1 e X2 é mostrado no PCB. A temporização dada pelo RC, é alterada pelo valor do capacitor ou do resistor, obtive valores de 50 s, 1 minuto e até 5 minutos, tudo questão de aplicar conforme a necessidade.

 Lista de materiais

 C1 - Capacitor de 47uF/25V, eletrolítico, polarizado.
 C2 - Capacitor cerâmico de 100nF/250V.
 D1 - Diodo retificador 1N4004, pode ser usado também o 1N4148.
 K1 - Relé tipo G5LE 12V/110-220/10 A.
 Q1,Q2 - Transistor BC548, NPN
 R1 - Resistor de 100k/1/8W.
 S1 - Chave simples, liga-desliga, veja texto e figura.
 X1,X2 - Conectores, ver texto e figura.

 Deixo o fotolito gerado para imprimir o circuito:


 Esse circuito pode ser adaptado sensores de presença e etc, desde que obedeçam as condições do mesmo.
 Boas práticas meus caríssimos e até a próxima!







By Rubens de Carvalho

quarta-feira, 24 de julho de 2013

Multivibrador astável - Pisca-pisca simples

 Um projeto que encanta pela simplicidade e que já foi experimentado diversas vezes por vários autores. Consiste basicamente do corte e saturação dos transístores T2 e T1 como no esquema.
Os capacitores C1 e C2, fazem o circuito de carga e descarga em conjunto com os resistores R2 e R3.
R1 e R4, limitam a corrente do led e alimentam o mesmo, ao cortar um transístor, outro fecha e acende o outro led, numa frequência determinada pelos capacitores.
 Esse circuito tem diversas aplicações comerciais, sendo fácil de montar e verificar o funcionamento, pra alterar a frequência basta mudar o valor dos capacitores.
Na figura ao lado, a sugestão do lay-out feito pelo CAD Eagle.
A alimentação do circuito pode ser feita por fonte de celulares e por 4 pilhas de 1,5V.
Árvore de Natal, letreiros luminosos, fantasias de carnaval e outros, são exemplos de aplicação.
Essa montagem pode ser realizada de várias maneiras, inclusive em placas universais, o que se aplica a maioria dos projetos desse blog.
 A sugestão pra aqueles que querem fazer o circuito impresso é esse site: http://www3.eletronica.org/, nele tem instruções pra você mandar o circuito junto com outras pessoas, pra baratear e ratear o custo de fabricação das PCIs dos circuitos.
 Confiram abaixo o fotolito do circuito:


 Lista de materiais

 C1,C2 - Capacitores eletrolíticos, polarizados de 1uF/25V.
 Led1, Led2 - Leds vermelho e verde.
 R1,R4 - Resistores de 1k/1/8W.
 R2,R3 - Resistores de 100k/1/8W.
 T1, T2 - Transístores BC547, NPN.

 Boas experiências!
 By Rubens de Carvalho

quinta-feira, 27 de junho de 2013

Repelente de insetos

 No circuito abaixo, proponho um projeto de um repelente eletrônico, que foi sugerido inicialmente pelo professor Newton C. Braga, fiz uma adaptação usando o CAD Eagle e testes com o MULTISIM.
 No esquema ao lado, a base desse circuito é um timer 555, na configuração de Astável.
 A alimentação é na faixa de 9 a 12 Vdc, e a frequência é controlada pelo P1, TW1 é um tweeter pizoelétrico de 100W, que é controlado por um Mosfet IRF640.
 É importante colocar um resistor de potência de 5W de 1Ohm, em série com o IRF640, Q1, pra limitarmos a corrente e não correr risco de queimar o tweeter pizoelétrico.
 Testei a eficácia do circuito e obtive bons resultados fazendo a frequência oscilar de 20 a 25 KHz.
A alimentação do circuito é dada pelo J1, veja o vídeo relativo na aula de FETs, do Curso de Eletrônica Básica link:  



 Lista de materiais

 R1 - 10k/1/8W.
 C1 - Capacitor cerâmico de 1nF/250V.
 C2 - Capacitor cerâmico de 100nF/250V.
 IC1 - Integrado LM555.
 J1 - Jack DCJ0202 de três pontos, ver figuras.
 P1 - Potenciômetro de 150k linear.
 Q1 - Mosfet IRF 640.
 TW1 - Tweeter pizoelétrico de 100W.

 Boas práticas!

 By Rubens de Carvalho

domingo, 26 de maio de 2013

Transmissor de FM

 Meus caros amigos, nessa postagem iremos analisar um transmissor de FM, cuja idéia original foi do professor Newton C. Braga e foi aplicada por mim usando o CAD Eagle, no diagrama esquemático e PCB.
 No esquema ao lado observamos o diagrama esquemático, onde o circuito é alimentado com uma bateria de 9V , G1e S1 liga o circuito. A entrada de aúdio é via microfone de eletreto que é tomado em X1 e é transferido via C1 pra amplificação e modulação no transístor Q1.
 A antena tem uma bobina que é feita com 4 voltas de fio 22 AWG, cerca de 0,321mm, e é acoplada em paralelo com CV, um trimmer de 3 pF, onde será sinalizada a frequência de transmissão, o canal, pra transmitir a voz, o aúdio de entrada do circuito.
O alcance desse circuito é de 500 metros, podendo ser extendido em até 2 km, no entanto recomendo testar o circuito e avisar as agências de fiscalização de telecom para executar um procedimento legal e monitorado dessa atividade, a fim de evitar aborrecimentos... Se quiser fazer diferente disso é por sua conta e risco...
 O circuito impresso do PCB foi executado de forma arredondada a fim de evitar problemas de capacitância parasitas que surgem em sistemas de RF, vale a pena observar esses limites e padrões pra assegurar uma transmissão limpa do sinal de aúdio.
 É interessante estudar uma possível modificação associando o transístor 2N2218 a um BF494 que existirá numa etapa de pré-amplificação, sendo que com essa configuração alcances maiores de até 20 km podem ser obtidos. Usem soldadores de até 30W de potência, afim de limitar alta temperatura de soldagem nos componentes.
Abaixo, temos o fotolito do projeto:

 Lista de Materiais

 ANT1 - Antena telescópica de 30 mm.
 C1,C4 - Capacitor de 100nF/250V, cerâmico.
 C2 - Capacitor cerâmico de 4n7F/250V.
 C3 - Capacitor cerâmico de 4p7F/250V.
 CV - Trimmer de 3pF.
 G1 - Conector de baterias de 9V.
 J1- Jack de três pontos, tipo KLBR1, ver texto e figuras.
 L1 - Bobina de fios sem núcleo, veja texto e figuras.
 R1 - Resistor de 4k7/1/8W.
 R2 - Resistor de 8k2/1/8W.
 R3 - Resistor de 6k8/1/8W.
 R4 - Resistor de 47 Ohm/ 1/8W.
 S1 - Chave liga desiga, veja o texto e figuras.

 Abraços e boa experiência!

By Rubens de Carvalho

quinta-feira, 2 de maio de 2013

Temporizador/Alarme com 555

 Olá pessoal, esse é um circuito muito conhecido, montado na configuração astável, que produz um sinal que pode funcionar como sirene, alarmando uma determinada condição.
 Pesquisei o circuito através de manuais de fabricantes e inspirado nas diversas publicações de circuito, criei essa versão baseada no CAD Eagle.
 Analisando o circuito impresso da figura, observa-se que as chaves S1 e S2, simulam o acionamento do relé K1, através do circuito Darlington, formado pelos transístores Q1 e Q2. O diodo D1, protege o relé contra as correntes negativas, junto com a saída sonora pode ser instalada lâmpadas ou sinalização, relativa a comutação do relé.
 Esse circuito foi criado pra condição de S1 e S2 ligados, pois assim o circuito estará com relé fechado no NA (Normalmente Aberto) e o led vermelho acionado.
 Quando S1 abre, o relé comuta, fechando NF(Normalmente Fechado), os leds verdes e amarelo acionarão, indicando o funcionamento do timer 555. Pra configurar a configuração de temporização, recomendo baixar o manual dos fabricantes pelo site www.alldatasheet.com, ou solicitar a apostila do nosso curso de Eletrônica Básica pelos comentários no tópico Curso de Eletrônica Básica. Esse circuito é de montagem simples e de infinitas aplicações, usei pra detectar água numa caixa e alarmar a falta dela, como aplicação exemplo.
O fotolito do circuito é apresentado abaixo:

 Lista de materiais

 C1 - Capacitor de 10nF/250V, cerâmico.
 C2 - Capacitor de 220nF/250V, cerâmico ou poliéster.
 D1- Diodo 1N4148, retificador.
 K1 - Relé G5LE, 12Vdc/110/220Vac/10 A/60 Hz.
 Led1 a Led3 - Leds padrão, amarelo, vermelho e verde.
 IC1 - Timer LM555.
 Q1,Q2 - Transístor BC547, NPN.
 R1,R3 - Resistor de 100k/1/8W.
 R2,R4,R5 - Resistor de 1k/1/8W.
 S1,S2 - Sensoresou microchaves pra simulação, veja o texto e figuras.

 Boas prática!

By Rubens de Carvalho



terça-feira, 26 de março de 2013

Controle por UJT ou PUT

 Esse circuito é uma idéia postada pelo professor Newton C. Braga, no Curso de Eletrônica Básica, livro lançado como E-Book, pelo Instituto Newton C. Braga.

 O circuito se baseia numa forma de controle simples, em ponte de diodos e no circuito básico de polarização do UJT 2N2648 ou do PUT 2N6823, a tensão do diodo zener, D5, varia entre 12 a 20V. A ponte de diodos dará um sinal de onda que será a referência pra gerar o sinal de disparo no gatilho do TIC226. Este circuito tem um bom controle para cargas indutivas e resistivas.
 O tiristor é um TRIAC TIC 206 ou 226, o resistor R4, será de 10k/2W, se a carga for usada em 127V, ou de 22k/5W, se for 220V, importante montar o tiristor numa placa de metal, isolando devidamente o componente, para dissipar o calor gerado no dispositivo, de forma que não quebre a junção semicondutora pelo excesso de temperatura, as conexões de tensões e cargas, são seletadas em S1 e nos CONECs de 1 a 3, observe figura acima.
 Foi usado nesse circuito um transformador de pulsos de relação 1:1, com a finalidade de isolar o pulso de disparo do gatilho do Triac. Enrole num bastão de ferrite de 1 cm de diâmetro, por 5 cm de comprimento, podendo ser empregado também um núcleo toróide de caracteríticas similares, 100 espiras de fio esmaltado 28 no primário e mais 100 espiras por cima, do mesmo fio, formando o trafo 1:1.
 Já empreguei esse circuito pra fazer controle de chocadeiras de ovos, secadores e outras aplicações, você pode experimentar uma aplicação em ventiladores e outros motores, o cuidado de usar a configuração certa de circuito com as tensões a serem empregadas.
 Observem abaixo o fotolito do circuito:

 Lista de materiais

 CONEC1 a CONEC3 - conectores, ver figuras e texto.
 C1 - Capacitor cerâmico ou poliéster de 100nF/250V.
 D1 a D4 - Diodos retificadores 1N4004.
 D5 - Diodo zener de 12Vdc/1W.
 Plug tri-way, padrão fonte alimentação PC, veja texto e figuras.
 R1 - Resistor de fio de 470 Ohm/1W.
 R2 - Resistor de 10k/1/8W.
 R3 - Resistor de 4k7/1/8W.
 R4 - Resistor de fio 10k/2W.
 R5 - Potenciômetro linear de 100k.
 T1 - Triac TIC226D.
 T2 - UJT 2N2646.
 TR1 - Transformador 1:1, ver texto.
 S1 - Chave liga-desliga de 3 posições, ver texto e figuras.

Como sugestiva de empacotamento do circuito, empregue uma caixa metálica, que servirá como dissipador pro tiristor e economizará o investimento de componentes desnecessários.
Abraços e boas experiências!

By Rubens de Carvalho

sexta-feira, 15 de fevereiro de 2013

Amplificador de 5 W

 Olá pessoal, vou citar esse circuito que é uma criação do nosso querido professor Newton C. Braga, e é citada no Curso de Eletrônica Básica de autoria dele;  criei uma forma nova de circuito impresso com o CAD Eagle e o circuito se baseia numa configuração que separa os semiciclos da onda e os une na saída do alto-falante.
 Observe que o semiciclo negativo é presente no transístor TIP 32, T2 e o positivo no TIP 31, que é T1 no esquema, a separação é feita pelo diodo D1, veja o esquema  à esquerda, onde a alimentação deve ser de 18V. Os transístores se encontram em configuração totem-pole.
 Esse amplificador tem a potência de 5W rms, que dá um excelente som e um circuito que pode ser usado para amplificar aúdio de computadores, net e notebooks.
 O jack J1 recebe o sinal de aúdio, que por sua vez é entregue ao potenciômetro R10 de 10k linear, a corrente segue pelo C3, que faz o primeiro acoplamento de impedância e vai ser tratada pela pré-amplificação do transístor Q1, os resistores R1, R2, R3 e R4, polarizam Q1 e entre o estágio de amplificação e driver, representado por C2 e os TIPs. É importante montar os TIPs aproveitando uma caixa metálica como dissipador, não esqueça de colocar a película de mica isolante e o parafuso isolado pra fixar os transístores na caixa.
 Por último, o sinal sai no alto-falante SP1, de 8 Ohm e 5W de potência. O circuito ao lado, à direita, sugere uma configuração e distribuição dos componentes desse circuito, os capacitoeres C1, C2, C5 e C6, tem a função de filtro, reforço e amortecimento de sinal, o volume de aúdio é controlado pelo potenciômetro R10.
 Você tem a opção de montar esse circuito numa placa universal, apenas observe as trilhas que irá dimensionar pra respeitar as limitações de corrente, fora isso, o resultado final será um circuito de excelente desempenho e que resolve a maioria dos problemas de amplificação de aúdio.
O fotolito do projeto é apresentado abaixo:

 Lista de Materiais

 C1,C6 -  Capacitor eletrolítico de 100uF/25V polarizado.
 C2,C3 - Capacitor cerâmico 100nF/250V.
 C4 - Capacitor cerâmico 100pF/250V.
 C5 -  Capacitor eletrolítico de 47uF/25V polarizado.
 D1 - Diodo 1N4004 retificador.
 J1 - Jack de 3 pontos, veja circuito.
 Q1 - Transístor BC547 NPN.
 Q2 - Transístor BC557 PNP.
 R1- Resistor de 680k/1/8W.
 R2 - Resistor de 820k/1/8W.
 R3 - Resistor de 10k/1/8W.
 R4 - Resistor de 180 Ohm/1/8 W.
 R5 - Resistor de 3k9/1/8W.
 R6 - Resistor de 18 Ohm/1/8W.
 R7,R8 - Resistor de 0,47 Ohm/5W.
 R9 - Resistor de 470 Ohm/1/8W.
 R10 - Potenciômetro linear de 10k.
 T1 - TIP31 Darlington NPN.
 T2 - TIP32 Darlington PNP.
 SP1 - Alto falante de 8 Ohm/5W.

 Abraços à todos e aguardo a réplica do pessoal!
 By Rubens de Carvalho.