Translate

domingo, 26 de maio de 2013

Transmissor de FM

 Meus caros amigos, nessa postagem iremos analisar um transmissor de FM, cuja idéia original foi do professor Newton C. Braga e foi aplicada por mim usando o CAD Eagle, no diagrama esquemático e PCB.
 No esquema ao lado observamos o diagrama esquemático, onde o circuito é alimentado com uma bateria de 9V , G1e S1 liga o circuito. A entrada de aúdio é via microfone de eletreto que é tomado em X1 e é transferido via C1 pra amplificação e modulação no transístor Q1.
 A antena tem uma bobina que é feita com 4 voltas de fio 22 AWG, cerca de 0,321mm, e é acoplada em paralelo com CV, um trimmer de 3 pF, onde será sinalizada a frequência de transmissão, o canal, pra transmitir a voz, o aúdio de entrada do circuito.
O alcance desse circuito é de 500 metros, podendo ser extendido em até 2 km, no entanto recomendo testar o circuito e avisar as agências de fiscalização de telecom para executar um procedimento legal e monitorado dessa atividade, a fim de evitar aborrecimentos... Se quiser fazer diferente disso é por sua conta e risco...
 O circuito impresso do PCB foi executado de forma arredondada a fim de evitar problemas de capacitância parasitas que surgem em sistemas de RF, vale a pena observar esses limites e padrões pra assegurar uma transmissão limpa do sinal de aúdio.
 É interessante estudar uma possível modificação associando o transístor 2N2218 a um BF494 que existirá numa etapa de pré-amplificação, sendo que com essa configuração alcances maiores de até 20 km podem ser obtidos. Usem soldadores de até 30W de potência, afim de limitar alta temperatura de soldagem nos componentes.
Abaixo, temos o fotolito do projeto:

 Lista de Materiais

 ANT1 - Antena telescópica de 30 mm.
 C1,C4 - Capacitor de 100nF/250V, cerâmico.
 C2 - Capacitor cerâmico de 4n7F/250V.
 C3 - Capacitor cerâmico de 4p7F/250V.
 CV - Trimmer de 3pF.
 G1 - Conector de baterias de 9V.
 J1- Jack de três pontos, tipo KLBR1, ver texto e figuras.
 L1 - Bobina de fios sem núcleo, veja texto e figuras.
 R1 - Resistor de 4k7/1/8W.
 R2 - Resistor de 8k2/1/8W.
 R3 - Resistor de 6k8/1/8W.
 R4 - Resistor de 47 Ohm/ 1/8W.
 S1 - Chave liga desiga, veja o texto e figuras.

 Abraços e boa experiência!

By Rubens de Carvalho

quinta-feira, 2 de maio de 2013

Temporizador/Alarme com 555

 Olá pessoal, esse é um circuito muito conhecido, montado na configuração astável, que produz um sinal que pode funcionar como sirene, alarmando uma determinada condição.
 Pesquisei o circuito através de manuais de fabricantes e inspirado nas diversas publicações de circuito, criei essa versão baseada no CAD Eagle.
 Analisando o circuito impresso da figura, observa-se que as chaves S1 e S2, simulam o acionamento do relé K1, através do circuito Darlington, formado pelos transístores Q1 e Q2. O diodo D1, protege o relé contra as correntes negativas, junto com a saída sonora pode ser instalada lâmpadas ou sinalização, relativa a comutação do relé.
 Esse circuito foi criado pra condição de S1 e S2 ligados, pois assim o circuito estará com relé fechado no NA (Normalmente Aberto) e o led vermelho acionado.
 Quando S1 abre, o relé comuta, fechando NF(Normalmente Fechado), os leds verdes e amarelo acionarão, indicando o funcionamento do timer 555. Pra configurar a configuração de temporização, recomendo baixar o manual dos fabricantes pelo site www.alldatasheet.com, ou solicitar a apostila do nosso curso de Eletrônica Básica pelos comentários no tópico Curso de Eletrônica Básica. Esse circuito é de montagem simples e de infinitas aplicações, usei pra detectar água numa caixa e alarmar a falta dela, como aplicação exemplo.
O fotolito do circuito é apresentado abaixo:

 Lista de materiais

 C1 - Capacitor de 10nF/250V, cerâmico.
 C2 - Capacitor de 220nF/250V, cerâmico ou poliéster.
 D1- Diodo 1N4148, retificador.
 K1 - Relé G5LE, 12Vdc/110/220Vac/10 A/60 Hz.
 Led1 a Led3 - Leds padrão, amarelo, vermelho e verde.
 IC1 - Timer LM555.
 Q1,Q2 - Transístor BC547, NPN.
 R1,R3 - Resistor de 100k/1/8W.
 R2,R4,R5 - Resistor de 1k/1/8W.
 S1,S2 - Sensoresou microchaves pra simulação, veja o texto e figuras.

 Boas prática!

By Rubens de Carvalho